我们已经知道添加一元多项式环 F[x]中不可约元的一个根得到的单代数扩张的结构,

而根据第三章推论 9.1 可知,对于 F[x]中的 n 次多项式 f(x)来说,

一定存在 F 的扩域 E, 使得 f(x)在 E 上有 n 个根 ,

如果我们将 f(x)的这 n 个根都添加到 F 中,

那么将得到 F的一个扩域,这就是分裂域,

分裂域与 n 次代数方程的求解问题密切相关,

本节重点研究分裂域的存在性、唯一性及其与正规扩张的关系等问题,

定义 4.1 设 F 是域 , f(x)是 F[x]中 n(n≥1)次多项式 ,

若 F 的扩域 E 满足下面两个条件:

(1)f(x)在 E[x]中能分解成一次因子的乘积,

即 $f(x)=a(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_n)$, α_i 属于 E, i=1, 2, \cdots , n, a属于 F,

 $(2)E=F(\alpha_1,\alpha_2,\cdots,\alpha_n)$,

则称 E 是 f(x)在 F 上的分裂域,

若 f(x)是域 F 上的 n(n>1)次多项式 ,则由第三章推论 9.1 可知 ,存在 F 的扩域 K ,使得 f(x)在 K[x]中能分解成一次因子的乘积

 $f(x)=a(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_n)$, a 属于 F, α_i 属于 K, i=1, 2, \cdots , n,

从而 $F(\alpha_1, \alpha_2, \dots, \alpha_n)$ 是 f(x)在 F 上的分裂域 ,

定理 4.1 域 F 上任意一个 n(n≥1)次多项式 f(x)在 F 上都有分裂域,

定理 4.2 设φ是域 F 到域下的域同构 , f(x)是 F[x]中的 $n(n \ge 1)$ 次多项式 ,

若 E 和 \overline{E} 分别是 f(x)在 F 上和 $f^{\varphi}(x)$ 在 \overline{F} 上的分裂域,

则存在 E 到 \overline{E} 的域同构 ψ , 使得 $\psi|_{F}=\phi$

证: 用数学归纳法证明,

当 n=1 时 $, \varphi$ 为所求 , 假设定理结论对 n-1 次多项式成立 ,

下面证明定理结论对 n 次多项式 f(x)成立,

设 p(x)是 f(x)的一个不可约因子,且属于 E 的 α 是 p(x)的一个根,

若令β是 $p^{\varphi}(x)$ 的一个根,

则由本章定理 2.2 可知 , 存在 $F(\alpha)$ 到 $\overline{F}(\beta)$ 的域同构 τ , 使得 $\tau(\alpha)=\beta$, $\tau|_{F}=\phi$,

由于 $\deg g(x) < \deg f(x)$, 因此由归纳假设可知,

存在 g(x)在 $F(\alpha)$ 上的分裂域 E 到 $g^{\tau}(x)$ 在 $\overline{F}(\beta)$ 上的分裂域 \overline{E} 的域同构 ψ ,

使得 $\psi|_{F(\alpha)}$ =τ, 进而, $\psi|_F$ =τ $|_F$ = φ ,

在上述定理中 , 若令 \overline{F} =F, φ = id_F , 则有:

推论 4.1 设 F 是域 ,

则 F[x]中 n 次多项式 f(x)在 F 上的分裂域在同构意义下是唯一的(n≥1)

例 4.1 设 f(x)=x⁴-x²-2 属于 Q[x],

分别求 f(x)在有理数域 Q 和在实数城 R 上的分裂域,

解: 因为 $f(x)=x^4-x^2-2=(x-\sqrt{2})(x+\sqrt{2})(x-i)(x+i)$,

所以 f(x)在有理数域上的分裂域是 $Q(\pm\sqrt{2},\pm i)=Q(\sqrt{2},i)$

易知,包含Q的扩张 $Q(\sqrt{2},i)$ 的本原元是 $\sqrt{2}+i$,

因此, f(x)在有理数域上的分裂域是 $Q(\sqrt{2}+i)$,

f(x)在实数域上的分裂域是 $R(\pm\sqrt{2},\pm i)$, 而易知 $R(\pm\sqrt{2},\pm i)=R(i)=C$,

例 4.2 求多项式 x^5-1 在有理数域 0 上的分裂域 .

解: 设 $\alpha = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$, 则 $x^5 - 1 = (x - \alpha)(x - \alpha^2)(x - \alpha^3)(x - \alpha^4)(x - \alpha^5)$, 所以 $x^5 - 1$ 在有理数域 Q 上的分裂域为 Q(α , α^2 , α^3 , α^4 , α^5)=Q(α)=Q[α] ,

例 4.3 设 $f(x)=x^2+x+2$ 属于 $Z_3[x]$, 试证明 $Z_3[i]$ 是 f(x)在 Z_3 上的分裂域证: 由 f(x)=(x-1+i)(x-1-i)可知,f(x)在 Z_3 上的分裂域是 $Z_3(1+i,1-i)$,因为 $1-(1\pm i)=\mp i$,所以 $Z_3(1+i,1-i)=Z_3(i)$,又因为 i(i 是 x^2+1 的根)是 Z_3 上的代数元,所以 $Z_3(i)=Z_3[i]$,即 $Z_3[i]$ 是 f(x)在 Z_3 上的分裂域,

例 4.4 设 F 是域 , 且 Char F=p>0,

下面来讨论与分裂域相关的正规扩张的性质,

定义 4.2 设包含 F 的 E 是域的有限扩张,

如果当 F[x]中的不可约元的一个根属于 E 时 ,该不可约元的其他根也属于 E ,那么称包含 F 的 E 是正规扩张 .

包含 F 的正规扩张 E 的概念也可以等价地定义为:

Ε 中任意元素α在 F 上的极小多项式在 E[x]中能分解成一次因子的乘积 ,

定理 4.3 设包含 F 的 E 是域扩张,

则当且仅当 E 是 F[x] 中某个多项式在 F 上的分裂域时,包含 F 的 E 是正规扩张,证: (必要性)若包含 F 的 E 是正规扩张,则包含 F 的 E 是有限扩张,

根据本章定理 3.3(2)可知,

存在 F 上的代数元 α_1 , α_2 , ..., α_n , 使得 $E=F(\alpha_1,\alpha_2,...,\alpha_n)$,

设 α_1 , α_2 , ..., α_n 在 F 上的极小多项式分别是 $f_1(x)$, $f_2(x)$, ..., $f_n(x)$,

 $f_1(x)$, $f_2(x)$, …, $f_n(x)$ 在 F 上的分裂域为 K,

因为包含 F 的 E 是正规扩张 , 所以 , $f_1(x)$, $f_2(x)$, \cdots , $f_n(x)$ 的所有根都在 E 中 ,

从而 $,f_1(x),f_2(x),\cdots,f_n(x)$ 的所有根都在 E 中 ,那么 K 包含于 E

但是, $F(\alpha_1,\alpha_2,\dots,\alpha_n)$ 包含于K,因而K=E,

即 E 是多项式 $f_1(x)f_2(x)$ … $f_n(x)$ 在 F 上的分裂域 ,

(充分性)假设 $E \in F[x]$ 中多项式 f(x)在 F上的分裂域 ,

则存在属于 E 的 α_1 , α_2 , \cdots , α_n 使得 $E=F(\alpha_1, \alpha_2, \cdots, \alpha_n)$,

 $\mathbb{H} f(x) = (x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_n)$,

由本章定理 3.3(1)可知,包含 F的 E 是有限扩张

接下来我们仅需要指出:对于F[x]中任一不可约元p(x),

若属于 E 的α是 p(x)的根 ,则 p(x)的任意一个根β属于 E,

因为 α , β 都是 p(x)的根 , 因此由本章推论 2.1 可知 ,

存在 $F(\alpha)$ 到 $F(\beta)$ 的域同构 φ ,使得 $\varphi|_{F}=id_{F}$,且 $\varphi(\alpha)=\beta$,

再由 $f(x) \in F[x] \subseteq F(\alpha)[x]$, $F(\beta)[x]$ 及定理 4.2 可知 ,

存在 $F(\alpha)(\alpha_1, \alpha_2, \dots, \alpha_n)$ 到 $F(\beta)(\alpha_1, \alpha_2, \dots, \alpha_n)$ 的同构τ,

从而, $|F(\alpha)(\alpha_1, \alpha_2, \dots, \alpha_n): F|=|F(\beta)(\alpha_1, \alpha_2, \dots, \alpha_n): F|$,

因为 α 属于 E, E=F(α_1 , α_2 , ..., α_n),

所以 $F(\alpha)(\alpha_1, \alpha_2, \dots, \alpha_n) = E$, $F(\beta)(\alpha_1, \alpha_2, \dots, \alpha_n) = E(\beta)$,

进而|E:F|=|E(β):F|=|E(β):E||E:F|,

因此 , |E(β): E|=1, 即属于 E, 证毕 ,

推论 4.2 设 K⊇E⊇F 是域的扩张,

若包含F的K是正规扩张,则包含E的K是正规扩张,

证: 因为包含 F 的 K 是正规扩张 , 所以包含 F 的 K 是有限扩张 ,

但是,E在F上的向量空间是K在F上的向量空间的子空间,

因此,包含F的E是有限扩张,

根据定理 4.3 可知,

存在属于 F[x]的 $f(x)=(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_n)$, 使得 $K=F(\alpha_1,\alpha_2,\cdots,\alpha_n)$, 因为 E 包含 F, 所以 f(x)属于 E[x],

且 $K=F(\alpha_1,\alpha_2,\cdots,\alpha_n)=E(\alpha_1,\alpha_2,\cdots,\alpha_n)$,即 K 是 f(x) 在 E 上的分裂域,因此,包含 E 的 K 是正规扩张,

注意,在推论 4.2 中,包含 F 的扩张 E 不一定是正规扩张,例如, x^3-2 是 O[x] 中的不可约元,

若设 $K \in \mathbb{R}^{3}-2$ 在 Q 上的分裂域 ,则包含 Q 的 K 是正规扩张 ,

但是包含 Q 的 Q($\sqrt[3]{2}$)不是正规扩张(因为 $\sqrt[3]{2}\omega$ 不属于 Q($\sqrt[3]{2}$), 其中 $\omega = \frac{-1+\sqrt{3}i}{2}$)

下例说明,在扩张 K⊇E⊇F中.

即使包含E的K和包含F的E都是正规扩张,包含F的K也不一定是正规扩张,

例 4.5 因为 $x^2-2=(x-\sqrt{2})(x+\sqrt{2})$, 所以包含 Q 的 $Q(\sqrt{2})$ 是正规扩张,

又因为 $x^2-\sqrt{2}=(x-\sqrt[4]{2})(x+\sqrt[4]{2})$,所以包含 $Q(\sqrt{2})$ 的 $Q(\sqrt[4]{2})$ 也是正规扩张 ,

但是 $x^4-2=(x-\sqrt[4]{2})(x+\sqrt[4]{2})(x-\sqrt[4]{2}i)(x+\sqrt[4]{2}i)$,

所以包含 Q 的 $Q(\sqrt[4]{2})$ 不是正规扩张