1. 证明任意有限域必有不等于它自身的代数扩张.

证明: 不妨设 F 是含 q 个元素的有限域 ,则对属于 F*的任意 α ,都有 α^q - α =0 , 所以 F 中任意元素均是多项式 x^q -x 的根 ,

从而 F上的多项式 $f(x)=x^q-x+1$ 在 F 中没有根 ,

设β是 f(x)的一个根 ,则β不属于 F 且包含 F 的 F(β)是有限扩张 , 也是代数扩张 ,且 $F(β) \neq F$,

2,设F是有限域,证明F-{0}的所有元素的乘积等于-1,

证明: 设|F|=q,则 $F-\{0\}=\{\alpha_1,\alpha_2,\cdots,\alpha_{q-1}\}$ 的元素是方程 $x^{q-1}-1=0$ 的所有根则 $x^{q-1}-1=(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_{q-1})$

 $\Rightarrow x=0$,则 $(-1)^{q-1}\alpha_1\alpha_2\cdots\alpha_{q-1}=-1$

由于-1 属于 F-{0}, 从而(-1) $^{q-1}$ =1, 故 $\alpha_1\alpha_2\cdots\alpha_{q-1}$ =-1

即 F-{0}的所有元素的乘积等于-1

3, 求|GF(729):GF(27)|和|GF(512):GF(8)|,

解: $|GF(729): GF(27)| = |GF(3^6): GF(3^3)| = 6 \div 3 = 2$,

 $|GF(512):GF(8)|=|GF(2^9):GF(2^3)|=9\div 3=3$,

4,构造含125个元素的域,并求其所有子域

解:因为 $125=5^3$,故需在 Z_5 上找到一个不可约的三次多项式 ,

易知 $f(x)=r^3+x+4$ 为 Z_5 上的不可约多项式,

设 α 为 f(x)的一个根 ,则 $|Z_5(\alpha)|=125$,其所有子域为 Z_5 , $Z_5(\alpha)$

5, 求 GF(26)的全部子域,

若α是 $GF(2^6)$ 的乘法群的一个生成元,

求 GF(26)的每个子域的乘法群的一个生成元,

解: 因为6的所有因子为1,2,3,6,

故 GF(26)的所有子域为 GF(2), GF(22), GF(23), GF(26),

 α 是 F 的乘法群的生成元 , 所以可设 α^i 是 GF(2^k)的乘法群的生成元 ,

根据[第二章推论 5.2(1)]可取 $i=\frac{2^6-1}{2^k-1}$

因此子域 CF(2), $GF(2^2)$, $GF(2^3)$, $GF(2^6)$ 的乘法群的生成元依次为 α^{62} , α^{21} , α^9 , α

6,设 f(x)是 $Z_p[x]$ 中的 m 次不可约元,试证明当且仅当 m|n 时, $f(x)|(x^{p^n}-x)$ 证明: $g(x)=x^{p^n}-x$ 在 Z_p 上的分裂域就是一个 p^n 阶有限域,

若 $f(x)|(x^{p^n}-x)$, 设 α 是 f(x)的一个根,

则 f(x)在 Z_p 上的分裂域 $Z_p(\alpha)$ 就是一个 p^n 阶域的子域 ,而 $|Z_p(\alpha)|=p^m$,所以 m|n 反之 ,设 α 是 f(x)的一个根 ,则 f(x)在 Z_p 上的分裂域 $Z_p(\alpha)=GF(p^m)$,

若 m|n,则 $Z_p(\alpha){=}GF(p^m)$ 是 $GF(p^n)$ 的子域 ,从而 α 是 $x^{p^n}{-}x$ 的根 ,

因为 f(x)是不可约元 , 所以 $f(x)|(x^{p^n}-x)$

7,设 p(x)是 Z[x]中的 n 次不可约元,

试证明若 α 是p(x)在其分裂域中的一个根,

则 p(x)在其分裂域中的全部根为 α , α^{p} , ..., $\alpha^{p^{n-1}}$

证明: 因为对于 Z_p 中的任意元素 β 都有 $\beta^p=\beta$, 又因 $p(\alpha)=0$ 且 $\deg p(x)=n$,

不妨设 $p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$,则 $p(\alpha)=a_n\alpha^n+a_{n-1}\alpha^{n-1}+\cdots+a_1\alpha+a_0=0$

从而 $[p(\alpha)]^{p^i}=(a_n\alpha^n+a_{n-1}\alpha^{n-1}+\cdots+a_1\alpha+a_0)^{p^i}$

$$= a_n(\alpha^{p^i}) + a_{n-1}(\alpha^{p^i})^{n-1} + \dots + a_1\alpha^{p^i} + a_0 = 0 (0 \leqslant i \leqslant n-1)$$

故 α , α^p , ..., $\alpha^{p^{n-1}}$ 是 p(x)的根,

下证这 n 个根不同

反证,假设存在i,j使得 $\alpha^{p^i}=\alpha^{p^j}(i>j)$,则 $\alpha^{p^i}-\alpha^{p^j}=(\alpha^{p^{i-j}}-\alpha)^{p^j}=0$,

从而 $\alpha^{p^{i-j}}$ - α =0,即 α 是 $x^{p^{i-j}}$ - $x(i-j \le n)$ 的根,

这与 α 是 n 次不可约元 p(x)的根矛盾,

8, 求属于 $Z_3[x]$ 的多项式 $f(x)=x^3+2x+1$ 在它的分裂域中的所有根

解: 经验证 f(x)为 $Z_3[x]$ 的不可约多项式,

设 $f(\alpha)=0$, α 为 f(x)的一个根 ,则其分裂域的所有根为 α , α^3 , α^9

习题 1 构造含有 16 个元素的有限域

解: x^4+x+1 是 $Z_2[x]$ 中不可约多项式 ,设α是该多项式的一个根 ,则 $Z_2(\alpha)$ 为所求

习题 2 求 GF(312)的全部子域,

解: GF(3¹²)的全部子域为 GF(3), GF(3²), GF(3³), GF(3⁴), GF(3⁶), GF(3¹²),

习题 3 求属于 Q[x]的 x^n-1 在 Q 上的 n 次单位根和本原 n 次单位根

解: n 次单位根的集合为 $\left\{\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} \middle| k = 0,1,\cdots,n-1 \right\}$ 本原 n 次单位根的集合为 $\left\{\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} \middle| (k,n) = 1, k = 0,1,\cdots,n-1 \right\}$

习题 4 证明映射 φ : GF(pⁿ)→GF(pⁿ), x→x^p是 GF(pⁿ)的自同构

证明: 对于属于 GF(pⁿ)任意 x,y,有(x+y)^p=x^p+y^p,(xy)^p=x^py^p,

即φ是 GF(pn)的自同态,

若 $x^p=y^p$,则 $0=x^p-y^p=(x-y)^p$,从而 x=y,即φ是单射,

因为 $GF(p^n)$ 是有限集合 , 故 ϕ 是双射 , 这就证明了 ϕ 是 $GF(p^n)$ 的自同构 ,

习题 5 试证明 Aut_FGF(p^n)={ $\varphi_i | \varphi_i : x \rightarrow x^{p^i}$, i=0, 1, ..., n-1},

证明: 先证 $\varphi_i: x \to x^{p^i}$ 是 GF(p^n)的自同构.

若 $x^{p^i}=y^{p^i}$,则 $0=x^{p^i}-y^{p^i}=(x-y)^{p^i}$,从而 x=y ,即 $φ_i$ 是单射 ,

因为 $GF(p^n)$ 是有限集合 ,故 $φ_i$ 是双射 ,

显然 $\phi_i(x+y)=(x+y)^{p^i}=x^{p^i}+y^{p^i}=\phi_i(x)+\phi_i(y)$, $\phi_i(xy)=(xy)^{p^i}=x^{p^i}y^{p^i}=\phi_i(x)\phi_i(y)$ 即 ϕ_i 是 GF(p^n)的自同态,

从而 φ_i 是 $GF(p^n)$ 的自同构,即 $GF(p^n)$ 中至少有 n 个元素 ,显然 φ_i 属于 $\langle \varphi_1 \rangle$,因为 $GF(p^n)$ 是 Z_p 上的单代数扩张 ,所以存在 α 使得 $GF(p^n)$ = $Z_p(\alpha)$, α 在 Z_p 上的极小多项式为 f(x),f(x)的次数为 n,

设φ是 $GF(p^n)$ 的自同构 ,对属于 Z_p 的 \overline{m} ,有 $φ(\overline{m})=mφ(\overline{1})=m\overline{1}=\overline{m}$ 即φ在 $GF(p^n)$ 上的像由α决定 ,

因为 $\varphi(f(\alpha))=f(\varphi(\alpha))$,即 $\varphi(\alpha)$ 是 f(x)的一个根 ,知 $GF(p^n)$ 中最多有 n 个元素 综上 , $GF(p^n)$ 的自同构群为 $\{\varphi_i|\varphi_i:x\to x^{p^i},i=0,1,\cdots,n-1\}=\langle\varphi_1\rangle$,

习题 6 有限域上的不可约多项式在分裂域中无重根

证明: 令 F=GF(pⁿ),

设 p 为素数 $, f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ 为 F 上不可约多项式 ,

若
$$f(x)$$
在分裂域中有重根,则 $f(x) = \sum_{i=0}^m b_i(x^p)^i = \left(\sum_{i=0}^m b_i x^i\right)^p$

这与 f(x)不可约矛盾

习题 7 在 $Z_p[x]$ 中证明当且仅当 m|n 时 $,(x^{p^m}-x)|(x^{p^n}-x)$

证明: 若 m|n, 则 $x^{p^m}-x$ 的根都是 $x^{p^n}-x$ 的根 , 因此 $(x^{p^m}-x)|(x^{p^n}-x)$

反之,因为 $GF(p^n)$ 由 $x^{p^n}-x$ 在分裂域中的全部根组成,

所以若 $(x^{p^m}-x)|(x^{p^n}-x)$,则 $GF(p^m)$ 是 $GF(p^n)$ 的子域,因此 m|n

习题 8 设 F 是特征为 p 的有限域, α 是 F 的乘法群的生成元, 试证明 α^p 是 F 的乘法群的生成元,

证明:设 F 的阶为 p^n ,则 F 的乘法群的阶为 $p^{n}-1$ 要证 α^p 是 F 的乘法群的生成元,只需要说明 α^p 阶为 $p^{n}-1$,

设 α^p 阶为 t,则 $\alpha^{tp}=1$,于是 p^n-1 |tp,

由 $(p^n-1,p)=1$ 得 $(p^n-1)|t$,而 $(\alpha^p)^{p^n-1}=1$,于是 $t|(p^n-1)$ 因此 α^p 阶为 p^p-1 ,