(以下设 F 是域,且 Char F=0)

1,设包含F的E是有限伽罗瓦扩张,

包含于 M 的 K 是包含 F 的 E 的中间域, M'是 K'的正规子群,

试证明包含 K 的 M 是有限伽罗瓦扩张,

证明:由[第四章推论 8.1]得有限伽罗瓦扩张等价于正规扩张,

由[第四章推论 4.2]得包含 K 的 E 是有限伽罗瓦扩张,

因为 M'是 K'的正规子群,

所以由[第四章定理 6.2(3)]得包含 K的 M 是正规扩张 , 从而是有限伽罗瓦扩张 ,

2,设p是素数,a属于F,

试证明多项式 x^p-a 或为 F 的不可约元,或在 F 上有根

证明: 若 Char F=p,则 x^p=x,其中 x 属于 F,

从而 a 是 x^p -a 的根 , x^p -a 在 F 上有根

若 Char F≠p,设 bp=a,若b属于F,则 xp-a在F上有根,

若不存在属于 F 的 b 满足 $b^p=a$, 则 f(x)在 F 上无根 ,

设 $f(x)=x^p-a$ 在其分裂域上的分解式为 $f(x)=(x-b)(x-b\zeta)\cdots(x-b\zeta^{p-1})$,

其中ζ为本原 p 次单位根,

若 f(x)在 F 上可约 ,则存在属于 F[x]的 g(x) ,使得 g(x)|f(x) ,

那么 g(x)的常数项为属于 F 的(-1)
r
b r $\prod_{k=1}^{r} \zeta^{i_k}$, r < p,

令
$$\eta = \prod_{k=1}^r \zeta^{i_k}$$
 ,则 η 为 p 次单位根, $b^r \eta$ 属于 F .

因为(r,p)=1, 故存在属于 Z 的 u,v 使得 ru+pv=1,

故 $b\eta = (b\eta)^{ru+pv} = (b^r\eta)^u\eta^{ru-u}a^v$

从而 $b\eta^{1+u-ru}=(b^r\eta)^ua^v$ 属于 F,η^{1+u-ru} 为 p 次单位根 ,故 $(b\eta^{1+u-ru})^p=a$,矛盾

3,设p是素数,域F包含所有p次单位根,

求属于 F[x]的多项式 xp-a 的伽罗瓦群

证明: x^p-a 在其分裂域 E 上的分解式为 $x^p-a=(x-b)(x-b\zeta)\cdots(x-b\zeta^{p-1})$,

其中 ζ 为本原 p 次单位根 , E=F(b) , b^p 属于 F

因为属于 $Aut_F(E)\sigma$ 由 $\sigma(b)$ 决定 ,而 $\sigma(b)$ 也是 x^p -a 的根 ,

所以, 若b属于F,则Aut_F(E)={id}

若 b 不属于 F, 则 $Aut_F(E)=\{\sigma_i|\sigma_i(b)=b\zeta^i\}$ 是 p 阶循环群

4,设 p 是素数 ,域 F 包含所有 p 次单位根 ,E=F(α), α 不属于 F, α ^p属于 F, 试证明属于 F[x]的 f(x)=x^p- α ^p是不可约元

证明: $x^p - \alpha^p$ 在其分裂域上的分解式为 $x^p - \alpha^p = (x - \alpha)(x - \alpha\zeta)\cdots(x - \alpha\zeta^{p-1})$,

其中ζ为本原 p 次单位根,

因为 α 不属于 F, ζ 属于 F, 所以 x^p - α^p 在 F上无根,

若 f(x)在 F上可约 ,则存在属于 F[x]的 g(x) ,使得 g(x)|f(x) ,

那么
$$g(x)$$
的常数项为属于 F 的 $(-1)^r b^r \prod_{k=1}^r \zeta^{i_k}$, $r < p$,

令
$$\eta = \prod_{k=1}^r \zeta^{i_k}$$
 ,则 η 为 p 次单位根, $\alpha^r \eta$ 属于 F.

因为(r,p)=1, 故存在属于 Z 的 u,v 使得 ru+pv=1,

故 $\alpha\eta = (\alpha\eta)^{ru+pv} = (\alpha^r\eta)^n\eta^{ru-u}\alpha^{pv}$

从而 $\alpha\eta^{1+u-ru}=(\alpha^r\eta)^u\alpha^{pv}$ 属于 F, η^{1+u-ru} 为 p 次单位根 ,故 $(\alpha\eta^{1+u-ru})^p=\alpha^p$,矛盾 ,

5, 令 $f(x)=x^3+2x+1$ 属于 Q[x], 试求 f(x)的伽罗瓦群 ,

解: $f(x)=x^3+2x+1$ 在 Q 上不可约, f(x)有两个复数根,

所以 f(x)在 Q 上的伽罗瓦群为 S₃

习题 1 设域 F 特征为零 ,证明 F 上 n(n=3,4)次多项式 f(x)可以用根式解证明: f(x)的伽罗瓦群是 S_n 的子群 , S_3 , S_4 是可解群 ,其子群也是可解群 ,于是 f(x)在 F 上可以用根式解.

习题 2 试证明包含 Q 的 Q($\sqrt[3]{2}$)不是伽罗瓦扩张 ,

证明: 因为不可约多项式 x^3-2 的一个根 $\sqrt[3]{2}$ 在域 $Q(\sqrt[3]{2})$ 中,

另一个根 $\sqrt[3]{2} \frac{-1+i\sqrt{3}}{2}$ 不在域 $Q(\sqrt[3]{2})$ 中,

所以包含 0 的 $0(\sqrt[3]{2})$ 不是正规扩张 , 从而不是伽罗瓦扩张

习题3举例说明在扩张K⊇E⊇F中,

即使包含 E 的 K 和包含 F 的 E 都是伽罗瓦扩张 , 包含 F 的 K 也不一定是伽罗瓦扩张 ,

解:由于 $Q(\sqrt{2})$ 是多项式 x^2-2 在有理数域上的分裂域,

因此包含 Q 的 $Q(\sqrt{2})$ 是正规扩张 , 从而是伽罗瓦扩张 ,

同理包含 $Q(\sqrt{2})$ 的 $Q(\sqrt[4]{2})$ 也是伽罗瓦扩张,

但是 $x^4-2=(x-\sqrt[4]{2})(x+\sqrt[4]{2})(x-\sqrt[4]{2}i)(x+\sqrt[4]{2}i)$,

所以包含 Q 的 $Q(\sqrt[4]{2})$ 不是正规扩张 ,从而不是伽罗瓦扩张

习题 4 设域 F 上多项式 f(x)在 F 中有一个根 α ,

试证明 f(x)的伽罗瓦群与 $\frac{f(x)}{x-\alpha}$ 的伽罗瓦群相同,

证明: 因为 α 属于 F, 所以 f(x)和 $\frac{f(x)}{x-\alpha}$ 在 F 上的分裂域相同 , 从而伽罗瓦群相同

习题 5 求 Q[x]中多项式 x^5-1 的分裂域及其分裂域的 Q-自同构的个数

解: 所求分裂域为 $Q(\alpha)$, 其中 $\alpha = \cos \frac{2\pi}{5} + \sqrt{-1} \sin \frac{2\pi}{5}$

 $f(x)=x^4+x^3+x^2+x+1$ 是 α 在有理数域上的极小多项式,因此 $|Q(\alpha):Q|=4$,

因为包含 Q 的 $Q(\alpha)$ 是正规扩张 , 进而是伽罗瓦扩张 ,

所以 Q(α)的 Q-自同构的个数为 4

习题 6 求属于 Q[x]的多项式 $f(x)=x^3-2$ 的伽罗瓦群 ,

解: f(x)在 Q 上的分裂域为 $E=Q(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega\sqrt[3]{2})=Q(\sqrt[3]{2}, 3)$

由|E:Q|=6 知|Aut₀(E)|=6,

令 τ , ϕ 属于 Aut₀(E), 其中 $\tau(\sqrt[3]{2})=\sqrt[3]{2}$, $\tau(\omega)=\omega^2$, $\phi(\sqrt[3]{2})=\omega^{3}\sqrt{2}$, $\phi(\omega)=\omega$,

验证可知τ是2阶元素, φ是3阶元素,

因为 f(x)无重根,其伽罗瓦群是 S3 的子群,

于是群 $\langle \tau, \phi \rangle$ 的阶为 6, 即 Aut_Q(E)=S₃

习题 7 设 F 是特征为零的域, θ 是本原 n 次单位根, $E=F(\theta)$,

试证明包含 F 的 E 是伽罗瓦扩张, 其伽罗瓦群是交换群,

证明: 因为多项式 xn-1 的每个根都可以表示为6幂的形式,

所以 x^n-1 在 F 上的分裂域为 $E=F(\theta)$, 故包含 F 的 E 是伽罗瓦扩张 ,

设σ, τ属于 Aut_F(E),

因为 σ , τ , 将 x^n -1 的根映为 x^n -1 的根 ,所以存在 s, t 使得 $\sigma(\theta)=\theta^s$, $\tau(\theta)=\theta^t$ 故 $\tau\sigma(\theta)=\tau(\theta^s)=\theta^{st}=\sigma\tau(\theta)$,即 $\sigma\tau=\tau\sigma$,Aut_F(E)是交换群 ,

习题 8 设 F 是域 ,且包含所有 n 次单位根 , α 是属于 F[x]的 x^n -a 的根 , $E=F(\alpha)$, 试证明当 Char F=0 或 Char $F=p\neq 0$ 且(p, n)=1 ,

则E关于F的伽罗瓦群是循环群

证明: 若 α =0, 结论显然成立, 下设 α \neq 0,

对属于 $Aut_F(E)$ 的任意 σ , $\sigma(\alpha)$ 也是属于 F[x]的 x^n - α 的根 ,

且 $(\sigma(\alpha))\alpha^{-1}$ 是 n 次单位根 , 设为 θ_{σ} (不必是本原 n 次单位根 , 但与 σ 有关),

从而 $\sigma(\alpha)=\theta_{\sigma}\alpha$,

定义 $Aut_F(E)$ 到 n 次单位根构成的 n 阶循环群的映射: $\sigma \rightarrow \theta_\sigma$

这个映射为群同态,且当 $\theta_{\sigma}=1$ 时, σ 是恒等映射,

因此上述映射为群单同态映射 , 于是 $Aut_F(E)$ 是 n 次单位根群的子群 ,

从而是循环群,

习题 9 令 E 是多项式 $f(x)=x^4-2$ 在有理数域上的分裂域 ,

试确定包含 Q 的 E 的所有子域及 Auto(E)的所有子群

解: 由 $f(x)=(x-\sqrt[4]{2})(x+\sqrt[4]{2})(x+i\sqrt[4]{2})$ 得分裂域 $E=Q(\sqrt[4]{2},i)$,

从而扩张次数为 $|E:Q|=|Q(\sqrt[4]{2},i):Q(\sqrt[4]{2})||Q(\sqrt[4]{2}):Q|=8$, $|Aut_Q(E)|=8$,

易知φ, σ属于 $Aut_0(E)$, 其中φ(i)=i, $φ(\sqrt[4]{2})=i\sqrt[4]{2}$, τ(i)=-i, $τ(\sqrt[4]{2})=\sqrt[4]{2}$

验证可知 (φ, τ) 是 Aut₀(E)的 8 阶子群 ,从而 Aut₀(E)= (φ, τ) ,

Aut₀(E)的一阶子群为{1}, 固定域为 E,

二阶子群为 $\langle \varphi^2 \rangle$, $\langle \tau \rangle$, $\langle \tau \varphi \rangle$, $\langle \tau \varphi^2 \rangle$, $\langle \tau \varphi^3 \rangle$

四阶子群为 $\langle \varphi \rangle$, $\langle \tau \varphi^2 \rangle$, $\langle \tau \varphi , \varphi^2 \rangle$

八阶子群为 $Aut_0(E)$, 固定域为 Q,

下面求 $\langle \tau, \varphi^2 \rangle$ 的固定域,

设 E 的任意元素 $a=a_0+a_1\sqrt[4]{2}+a_2(\sqrt[4]{2})^2+a_3(\sqrt[4]{2})^3+b_0i+b_1i\sqrt[4]{2}+b_2i(\sqrt[4]{2})^2+b_3i(\sqrt[4]{2})^3$

则 $\tau(a)=a_0+a_1\sqrt[4]{2}+a_2(\sqrt[4]{2})^2+a_3(\sqrt[4]{2})^3-b_0i-b_1i\sqrt[4]{2}-b_2i(\sqrt[4]{2})^2-b_3i(\sqrt[4]{2})^3$

 $\phi^2(a) \! = \! a_0 \! - \! a_1 \! \sqrt[4]{2} + a_2 (\sqrt[4]{2})^2 \! - \! a_3 (\sqrt[4]{2})^3 \! + \! b_0 i \! - \! b_1 i \! \sqrt[4]{2} \! + \! b_2 i (\sqrt[4]{2})^2 \! - \! b_3 i (\sqrt[4]{2})^3$

若τ(a)=a= φ^2 (a),则 a=a₀+a₂($\sqrt[4]{2}$)²,即(τ, φ^2)的固定域为 Q($\sqrt{2}$)

类似地 ,二阶子群为 (ϕ^2) , $(\tau\phi)$, $(\tau\phi^2)$, $(\tau\phi^3)$ 的固定域依次为

 $Q(i, \sqrt{2}), Q(\sqrt[4]{2}), Q((1+i)\sqrt[4]{2}), Q(i\sqrt[4]{2}), Q((1-i)\sqrt[4]{2}),$

四阶子群 $\langle \varphi \rangle$, $\langle \tau \varphi , \varphi^2 \rangle$ 的固定域为 Q(i), Q(i $\sqrt{2}$),